## PROPOSED TOPICS FOR MASTER THESIS

Program: Systems biology Admission year: 2021 Published: October, 2021

| Topic with description                                                                                   | Contact person | Contact email                   |
|----------------------------------------------------------------------------------------------------------|----------------|---------------------------------|
| TITLE: DNA properties of computationally mapped nucleosome positions                                     | Erinija        | erinija.pranckeviciene@mf.vu.lt |
| ABSTRACT. Nucleosome positioning DNA sequence patterns (NPS) - usually distributions of particular       | Pranckevičienė |                                 |
| dinucleotides or other sequence elements in nucleosomal DNA - at least partially determine               |                |                                 |
| chromatin structure and arrangements of nucleosomes that in turn affect gene expression.                 |                |                                 |
| Statistically, NPS are defined as oscillations of the dinucleotide periodicity with about 10 base pairs  |                |                                 |
| (bp) which reflects the double helix period. Recently few distinctive patterns in nucleosomal            |                |                                 |
| sequences were observed that can be termed as packing and regulatory referring to distinctive modes      |                |                                 |
| of chromatin function [1]. Our working hypothesis for the future studies is that packing patterns tend   |                |                                 |
| to be preferred by evolutionary lower organisms and regulatory by higher organisms. Given vast           |                |                                 |
| amount of publicly available nucleosome maps in various organisms [2,3] it is possible investigate       |                |                                 |
| computational maps of nucleosomes at the regulatory elements of the genomes and characterize             |                |                                 |
| sequence dependant rigidity and plasticity of DNA at these locations.                                    |                |                                 |
| REFERENCES                                                                                               |                |                                 |
| 1.Pranckeviciene E, Hosid S, Liang N, Ioshikhes I (2020) Nucleosome positioning sequence patterns as     |                |                                 |
| packing or regulatory. PLoS Comput Biol 16(1): e1007365.                                                 |                |                                 |
| https://doi.org/10.1371/journal.pcbi.1007365                                                             |                |                                 |
| 2. Teif V.B. (2016). Nucleosome positioning: resources and tools online. Briefings in Bioinformatics 17, |                |                                 |
| 745-757. [https://generegulation.org/nucleosome-positioning-database/]                                   |                |                                 |
| 3. Yongbing Zhao et al., NucMap: a database of genome-wide nucleosome positioning map across             |                |                                 |
| species, Nucleic Acids Research, Volume 47, Issue D1, 08 January 2019,                                   |                |                                 |
| [https://bigd.big.ac.cn/nucmap/]                                                                         |                |                                 |
| TITLE: Comprehensive Characterization of Human Genome Variation by High Coverage Whole-                  | Alina Urnikytė | alina.urnikyte@mf.vu.lt         |
| Genome Sequencing of Lithuanians.                                                                        |                |                                 |
| TITLE: Predicting drug treatment response in alcohol use disorder                                        | Valentina      | valentina.vengeliene@gf.vu.lt   |
| Inter-individual differences between patients with alcohol use disorder (AUD) underlie their different   | Vengelienė     |                                 |
| response to drug treatment and are the likely cause for poor treatment efficacy in some of them. Low     |                |                                 |
| sleep quality is one predictor of increased alcohol consumption in humans. Melatonin is a hormone        |                |                                 |
| approved for human use to improve sleep quality and have been shown to reduce relapse-like alcohol       |                |                                 |
| drinking in rats. Our objective is to identify, if impaired circadian activity of the rat would predict  |                |                                 |
| effectiveness of melatonin in reducing voluntary alcohol consumption.                                    |                |                                 |

| TITLE: Molecular shape similarity in virtual screening for drug discovery                                                                     | Julius Žilinskas  | julius.zilinskas@mif.vu.lt  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|
| ABSTRACT. Virtual Screening can drastically accelerate drug discovery processes. Molecular shape                                              | Janas Zimiskas    | janas.zimiskas@mi.va.it     |
| similarity is essential in virtual screening for drug discovery. Shape similarity is used to compare in                                       |                   |                             |
| detail the shape of a query molecule against a large database of potential drug compounds. In order                                           |                   |                             |
| to evaluate shape similarity accurately the molecules should be optimally adjusted. In this work,                                             |                   |                             |
| optimization problems for molecular shape similarity are investigated aiming at fast solution and                                             |                   |                             |
| acceptable accuracy.                                                                                                                          |                   |                             |
| TITLE: Applying ANN and machine learning for crystal property prediction                                                                      | Saulius Gražulis  | saulius.grazulis@bti.vu.lt  |
| ABSTRACT: Modern methods of machine learning allow to detect latent features and regularities in                                              | Jaanas Grazans    | Saunasignazans@ Sti.va.ne   |
| large amounts of data which were formerly inaccessible for automated analysis. The Crystallography                                            |                   |                             |
| Open Database (COD, https://www.crystallography.net/), the world's largest collection of open access                                          |                   |                             |
| crystal structure data for small molecules. This data set open excellent opportunity to train various                                         |                   |                             |
| machine learning tools (ANNs, SVMs, Bayesian classifiers) to predict various properties of materials,                                         |                   |                             |
| starting from unit cell volume, melting point, dielectric properties from material structures. In this                                        |                   |                             |
| work, several different machine learning methods should be quantitatively investigated for their                                              |                   |                             |
| suitability for the crystal property prediction tasks. The trained networks should then be used to                                            |                   |                             |
| validate the COD data base and incoming structures to detect possible inaccuracies or errors in data.                                         |                   |                             |
| TITLE: Computing chemical structures in P1 cell for the Crystallography Open Database                                                         | Saulius Gražulis  | saulius.grazulis@bti.vu.lt  |
| ABSTRACT: In crystallographic structure descriptions, a smallest unique structure fragment – an                                               | Saulius Grazulis  | Saulius.grazulis@bti.vu.it  |
| , , , , , , , , , , , , , , , , , , , ,                                                                                                       |                   |                             |
| asymmetric unit – is usually refined and presented; such data set fully describes a crystal structure                                         |                   |                             |
| together with unit cell parameters and crystal symmetry information. The crystallographic description                                         |                   |                             |
| however is not always convenient for chemiinformatic investigations, where researchers are                                                    |                   |                             |
| concerned with molecules, their connectivity, proximity and geometry. Thus a full molecular                                                   |                   |                             |
| description must be always restored from crystallographic description before further chemoinformatic                                          |                   |                             |
| computations can be carried out. Repeating such computations every time is time and energy                                                    |                   |                             |
| consuming, can introduce additional errors and makes a barrier of entry into chemiinformatics                                                 |                   |                             |
| research higher for chemists who were not trained in crystallographic computations. In this work we                                           |                   |                             |
| propose to compute a database of full molecule descriptions together with data provenance from the                                            |                   |                             |
| Crystallography Open Database (COD, <a href="https://www.crystallography.net/">https://www.crystallography.net/</a> ), and build a novel open |                   |                             |
| database of chemical structures using models of P1 crystal cells. In this database, investigation of                                          |                   |                             |
| optical isomers (their frequency of occurrence, presence in co-crystal, conformational variability)                                           |                   |                             |
| should be then carried out.                                                                                                                   |                   |                             |
| TITLE: Non-invasive intracranial blood volume pulse wave monitoring and signal analysis                                                       | Linas Petkevičius | linas.petkevicius@mif.vu.lt |
| Abstract: An ultrasonic methods often are used to non-invasively measure intracranial blood volume                                            | i                 |                             |
| (IBV) pulse waveforms. This technology has shown a strong association between invasively recorded                                             |                   |                             |
| ICP pulse waves and non-invasively recorded IBV pulse waves. The objective of the master thesis was                                           |                   |                             |

| to investigate the signal analysis methods and functional parametrizations. Later using deep learning   |                    |                             |
|---------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|
| techniques create the IBV estimation models and apply for patients risks estimation. This research will |                    |                             |
| require the technical knowledge of Python and Pytorch frameworks, as well as wide range medical         |                    |                             |
| data analysis by creating new mathematical models.                                                      |                    |                             |
| TITLE: Deep learning architecture comparison for the detection of de novo mutations in next             | Karolis Šablauskas | karolis.sablauskas@santa.lt |
| generation sequencing data.                                                                             |                    |                             |
| Abstract: De novo mutations (DNMs) are an important factor for determining the cause of the disease.    |                    |                             |
| Unfortunately, identifying reliable DNMs remains a major challenge due to sequence errors, uneven       |                    |                             |
| coverage, and mapping artifacts. We developed a deep convolutional neural network (CNN) DNM             |                    |                             |
| caller (DeNovoCNN), that encodes alignment of sequence reads for a trio as 160×164 resolution           |                    |                             |
| images. The aim during the master thesis would be evaluating additional neural network architectures    |                    |                             |
| such as transformer models for the detection of DNMs and their comparison to DeNovoCNN. This            |                    |                             |
| project requires knowledge of Python and Pytorch or Keras frameworks.                                   |                    |                             |
| References: DeNovoCNN: A deep learning approach to de novo variant calling in next generation           |                    |                             |
| sequencing data. G. Khazeeva, K. Sablauskas, et al.                                                     |                    |                             |
| https://www.biorxiv.org/content/10.1101/2021.09.20.461072v1                                             |                    |                             |
| TITLE: Investigation of rare disorders via analysis of target RNA and transcriptome                     | Eglė Preikšaitienė | egle.preiksaitiene@mf.vu.lt |
| sequencing.                                                                                             |                    |                             |
| Abstract: Rare genetic disorders and congenital anomalies are significant causes of chronic             |                    |                             |
| illness. More than 7000 rare disorders are known to date, about 80 % of them have genetic               |                    |                             |
| etiology. The advent of genome wide molecular technologies and application of whole                     |                    |                             |
| exome/genome sequencing in clinical practice significantly accelerated the identification of            |                    |                             |
| genetic causes of rare hereditary conditions. However, massively parallel sequencing-based              |                    |                             |
| tests generate large amounts of data, thereby presenting a challenge to determine the single            |                    |                             |
| variant responsible for the disease. The purpose of this work is to proceed the research of             |                    |                             |
| rare genetic disorders beyond DNA studies to get a deeper understanding of the functional               |                    |                             |
| impact of DNA variants of interest on the mRNA level and provide insights into biological               |                    |                             |
|                                                                                                         |                    |                             |
| processes underlying the disease.                                                                       |                    |                             |